An Optimised Software Solution for an ARM Powered™ MP3 Decoder

By Barney Wragg and Paul Carpenter

Abstract

The market predictions for MP3-based appliances are extremely positive. The ability to
maintain impressive sound quality whilst reducing the data requirements by a factor of 1:10 or
more, has led to an explosion of content on the Internet. Traditionally, a DSP processor may
have been specified as an implementation platform for MP3. However, analysis of the key
technica requirements for MP3 show that a programmable software solution mapped to a low-
power ARM? processor has many advantages over a DSP-based implementation.

I ntroduction

The ability to compress sampled data and still maintain excellent sound quality is transforming
the digital audio market. A new generation of solid-state players, where data is stored in non-
volatile flash memory, has rguvenated the market for portable audio equipment. Generally,
these players are more robust than CD products, and have reduced power requirements
because they contain no moving parts. They can also be manufactured in a smaller form factor
and are better suited for portable personal audio and automotive applications.

Compression techniques can a so be applied to the storage of audio data on CD and hard disks.
The compressed audio format applied to any media allows considerably more content to be
stored than before. For example, it is possible to store around eight and a half thousand
minutes of music, the equivalent of 150 uncompressed CDs, using a laptop PC 4.2Gbyte hard
disk.

As well as the considerable benefits that MP3 technology can bring to the design of the audio
player, the combination of excellent sound quality with good compression means that
relatively low bit rates are required to transmit audio content electronically. This has been a
major factor in the pervasiveness of MP3 content on the Web, and will undoubtedly continue
to be a significant influence in the overal growth of the MP3 market. Estimates vary, but the
major manufacturers predict that the market for portable players alone will grow to tens of
millions of units by 2002, with a significant number of sales replacing the uncompressed CD
format over the next few years.

New channel possibilities for the delivery of MP3 audio content — for example, wireless
distribution via 3G or Bluetooth, is likely to drive MP3 functionality into other appliances
such as mobile phones, communicators and PDAS.

The ARM MP3 Solution

The ARM MP3 software decoder is fully compliant with the ISO MPEG audio standards. This
includes I1SO/IEC 11172-3 (MPEG-1), ISO/IEC 13818-3 (MPEG-2), and aso the MPEG-2.5
low bit rate extensions (as defined by the Fraunhofer Institute). The implementation supports
both stereo and mono decoding.

The target processors include the ARM7™ and ARM9™ platforms. These are based on the
ARM V4T architecture, and offer different performance points. It is important to note that this

A7 IAaNnIAN [o W R ¥ AAAA ARRA T &l

implementation does not require the use of a DSP or in fact any other external hardware — the
MP3 processing can be done entirely on the ARM.

Adaptability

A programmable solution is particularly suitable for a digital audio platform since it provides
greater flexibility, appropriate for a rapidly changing market. This is beneficia where
standards are still emerging, for example, the more recent audio codec standards such as
MPEG-AAC and WMA, and in the area of digital watermarking for copyright protection. The
ability to quickly incorporate modified algorithms can give a manufacturer a significant
competitive advantage in bringing derivative products to market.

L ow Power and Cost

Since the highest volume MP3 producers will target price-sensitive consumer markets, it is
essentia that hardware and software cost be minimised. At the same time, MP3 manufacturers
must deliver products that meet key consumer purchasing criteria, including excellent audio
quality and long battery life.

Delivering market-leading performance in low-power consumption has been critical to the
success of ARM in other highly competitive portable markets, such as digital cellular
handsets. This core strength of the ARM architecture will scale further with the availability of
new silicon process technologies as supply voltages also reduce.

One of the most important benefits of the ARM MP3 solution, and a significant advantage
over DSP-based implementations, is that all the required processing can be performed on the
ARM as a standalone processor. This helps reduce power consumption, minimises chip area
and considerably simplifies the hardware and software development process.

The ARM can perform the audio processing whilst also fulfilling the requirements of the
system control functions, such as management of 10, card memory, display and keyboard. In
contrast, a DSP-based implementation would require a separate microcontroller to run the rest
of the system. Clearly, an implementation based around two processors will require additional
chip area. Development of protocols for control and data exchange between the DSP and the
microcontroller will increase the overall system complexity.

Integrating all of the functionality onto a single processor is aso a critica factor in easing the
development process and consequently the time to market.

Ease of Development

Because the ARM processor solution is centred on a single memory system, the availability of
a unified memory map considerably simplifies the overall software design task. For systems
running an RTOS, it is a straightforward task to call the MP3 function through an API. In
contrast, most RTOS do not provide API support for DSPs, and so the DSP-based solution
would require development of bespoke scheduling routines — something that is complex and
prone to timing difficulties when the task has to be scheduled out to a second processor.

A7 IAaNnIAN [o WY S Y ¥ AAAA ARRA T &l

The ARM Developer Suite™ (ADS) provides the software developer with a complete kit of
tools including a GUI, C and C++ compilers and linkers in an integrated environment, which
can be used to develop application code for the ARM, and also assist with porting RTOS if
required. This provides a single, familiar environment for the software designer. Software
development for a DSP plus microcontroller implementation may require the designer to use
two disparate tool flows. In addition, hardware developers will face a further, complex
integration step.

Algorithm Analysis

The software decoder implementation was developed using the 1SO reference code as a
standard. Although this provides a golden reference for verification of any implementation, it
was clear that compiling the standard 1SO reference code would yield a far from optimal
solution. Analysis of each of the steps involved in decoding the MP3 data was required in
order to improve the MP3 implementation for the ARM platform.

The key to the efficiency of MP3 is perceptual coding — in other words ignoring those noises
that are masked by more dominant sounds, and therefore not perceived by the ear. In order to
do this the MP3 algorithm includes a psychoacoustic model of the human ear. By ignoring
information not perceived by the ear, the signal can be represented by fewer bits without loss
of quality.

Fixed-point Implementation

Whilst the 1SO reference code is based on floating-point arithmetic, for an efficient mapping
to most embedded hardware structures it is necessary to consider a fixed-point
implementation. The quality of the audio must not be compromised for the product to meet the
basic requirements of the consumer. A good system design will maximise the signal-to-noise
ratio in the implementation of the algorithm whilst minimising the overall complexity of the
design.

As most digital audio players use 16-bit audio DACs, maintaining the audio quality to at least
16-bits is important, otherwise the decoding process starts to introduce noise, which can
substantially impair sound quality.

Most consumer DSP approaches use either a 16-bit or 24-bit data path. Using al6-bit DSP is
not ideal, as the 16-hit data path has the same precision as the desired output. Consequently,
every arithmetic operation during the decode process can add extra noise to the output. A
single bit error in the output corresponds to a decrease of approximately 6dB in the signa to
noise ratio. Even with extended multiply and accumulate structures, the short 16-bit width of
the data path means that accuracy is inevitably lost due to rounding errors, and the lack of
resolution results in the introduction of higher levels of noise. In order to avoid this limitation
with the 16-bit DSP architecture, the magjority of DSP vendors have promoted a 24-bit DSP
architecture. Although this does provide more resolution in the data path and internal registers,
the disadvantage of this approach is that these devices tend to be more expensive and have
higher power consumption than the 32-bit ARM processors.

The ARM has a full 32-bit internal data path and register set, including a 32x32 multiply
giving a 64-hit result, which gives it a significant advantage over 24-bit DSP implementations.
This means that far greater resolution can be maintained during the intermediate processing

A7 IAaNnIAN [o WS S) ¥ AAAA ARRA T &l

stages, resulting in a highly efficient implementation with the best possible audio quality.
Using a 20-bit output the signal to noise ratio of the decoder is in the region of 120dB, which
is comparable to CD quality.

M P3 Processing Stages

Analysis of the proposed 1SO agorithms at each stage of the MP3 processing led the ARM
team to design more efficient aternatives in severa cases. This approach enabled significant
performance enhancements to be made by modifying the core agorithms to achieve a better
mapping on to the ARM instruction set. The processing requirements could be further reduced
where common operations could be identified and merged into single steps.

The basic steps in the MP3 decoding process are listed below, and illustrated in the functional
block diagram of Figure 1.

Acquire header and synchronise
Decode header information
Unpack scalefactors

Huffman decoding

Inverse quantisation

Inverse transform

Polyphase filtering

NouhkowdpE

MP3
Stream

¢ > Unpack Scale

Factors

Get header
Find sync

+ Inverse Modified
Digital Domain DCT Polyphase

Decode . ; >
10101110001 Filter Bank
Header [P] (IMDCT)

Frequency Domain

Iﬁ Tiqul\/

Decode
Inverse

Huffi —>
» wiman Quantisation

Data

Figure 1. MP3 Processing Stages

Referring to the main MP3 processing stages illustrated in Figure 1, a common assumption is
that a special-purpose DSP processor is necessary for implementation. There are severd
functions — such as IMDCT and filtering, which would commonly be classified as typical
digital signal processes.

A7 IAaNnIAN [o WY Y ¥ AAAA ARRA T &l

In fact, on closer inspection many of the operations either involve bit-level manipulation or
can be reformulated to better suit bit-level manipulation. In addition, several of the processing
steps require execution of complex decision making — for example, cascaded ‘if...then’
statements. The ARM architecture and instruction set is extremely efficient at conditional
execution (i.e. branching on the same cycle as the condition tested), and bit-level signal
manipulation.

Several of these efficiencies can be illustrated by considering the execution of the first three
steps in the decoding process. Processing starts with identification of the frame sync within the
32-bit frame header, and decoding the information within the header, which typicaly specifies
the MPEG version, layer description and bit rate.

1. Acquire header and synchronise
2. Decode header information

In the ARM implementation these steps are merged into one operation, since the bit-level
processing requirements are very similar.

3. Unpack scalefactors

After the header information, the next transmitted data is the scalefactors that control the gain
in each frequency band. Unpacking these requires similar processing to steps 1 and 2, and is
again based on bit-level manipulation.

One source of efficiency in implementing these steps is the ability to perform ‘shift’ and
‘mask’ operationsin a single cycle on the ARM’s 32-bit barrel shifter. For example, decoding
18 equally sized scalefactors can be done in consecutive single instructions on the ARM:

AND scalefactor, mask, bitstream, LSR #<n>

This instruction shifts the bitstream right by the required number of bits and ‘ANDs' with a
mask in a single cycle. The mask would be a value such as 0x07, which would extract 3 hits.
The mask is held in aregister, but the same value is used 18 times.

Other architectures usually require two instructions to perform the equivalent operation:

LSR tmp, bitstream, LSR #<n>
AND scalefactor, tmp, mask

The actual frequency energies follow the scalefactors in the bitstream, quantised and
Huffman-encoded. The decoder’s task is to Huffman-decode, requantise, and transform the
energies into the time-domain.

4. Huffman decoding
Huffman coding creates variable length codes, with higher probability symbols assigned

shorter codes. Each code has a unique prefix, which means that they can be decoded correctly
using abinary tree.

A7 IAaNnIAN [PR R ¥ AAAA ARRA T &l

The Huffman encoding in the encoder uses many different Huffman trees selectively
according to the data contents, to minimise the total bit-length. The Huffman decoder has to
traverse the appropriate tree for each symbol in the frame data to arrive at the decoded value.
When the Huffman decoder has decoded the values, they have to be re-scaled using the
scalefactors into real spectral energy values.

The ARM implementation uses a proprietary coding of a level-compressed Huffman tree.
Implementation of the Huffman decode offers a design trade off between the size of the look-
up table and the access overhead. This implementation optimises the size of the ROM |ook-up
in preference to the access time, since thisis arelatively fast operation on the ARM.

The in-line barrel shift is capable of a load and offset operation in a single cycle, which
facilitates efficient implementation of the look-up operation from the extracted bits within the
bitstream.

5. Inverse quantisation

Quantisation is done via a power-law quantiser. In this way, larger values are automatically
coded with less accuracy, and some noise shaping is aready built into the quantisation
process. The inverse quantisation algorithm requires that the value from the Huffman decode
is raised to the power of 4/3. The range of input values varies from 0 to 8191, which would
require 32kbytes of look-up table storage. However, by manipulating larger values prior to
applying the power-law re-quantisation, it is possible to reduce the table size to just 4kbytes.
Essentialy, the input value is tested — if it is greater than 1023, it is divided by 8 before 10ok-
up, and the result is multiplied by 16 to yield a value equivalent to x “®. Because the vaue
from the Huffman decoding operation is often £1, testing for this condition is worthwhile as in
this case no scaling operation is required.

As the most efficient solution again involves the use of a table look-up technique, it was
possible to merge the execution of this step into the Huffman decode operation.

Much of this arithmetic can be implemented very efficiently using the barrel shifter. In
addition, these operations require complex conditional execution in the control flow of the
processor —

e.g. if input > 1023 then ‘divide by 8’

if input = %1 then ‘don’t scale’

Because the ARM RISC architecture can perform conditional execution —i.e. branching on the
same cycle as the conditional test, this further enhances the processing efficiency for this and
other similar stages where the control-flow overhead could otherwise be significant.

6. Inverse Transform
To synthesise the output samples, a transform is applied that is the reverse of the time-to-
frequency transform used in the encoder. The core of the inverse modified discrete cosine

transform (IMDCT) calculation is performed by multiplying an input vector of size n by a
matrix of size n by n. Analysis of this operation yields a calculation of complexity:

n additions + n? multiplications + (n-1)n additions.

A7 IAaNnIAN [o W S ¥ AAAA ARRA T &l

Again, it is possible to re-formulate the operation to better suit the ARM instruction set. The
ARM proprietary implementation reduced the cost of this operation to complexity n.log(n)
multiplies. For large values of n, this equates to less than 10% of the above complexity
definition.

Processing improvements can also be achieved by considering the requirements of the
downstream filtering steps. It became apparent that re-ordering the output from the IMDCT
simplified the implementation of the polyphase filter.

7. Polyphase Filter

After performing the transform in the decoder, the final operation required before output is the
polyphase filter bank, which reconstructs the audio signal from 32 equally-spaced frequency
bands. Each band is band-pass filtered using a common low-pass filter modulated by a cosine
term.

The 1SO standard specifies that the last 2048 samples should be stored for each channel. Re-
ordering the data from the IMDCT reduced that requirement to 1024 samples per channel,
with no loss in accuracy. This obviously halves the RAM storage required for this operation.

The target architecture is capable of implementing a memory load in 3 cycles and store in 2
cycles. However, by organising the data so that memory access is via consecutive addresses it
is possible to achieve effective load and store operations in a single-cycle, which significantly
enhances the performance of the convolution operation.

Performance

Table 1 illustrates for three of the popular ARM RISC architectures the required clock speeds
to meet the given sample rate. These performance figures assume that the memory is 32-bit
wide, zero wait-state memory. The memory required for each implementation is low — just
27kB of ROM and 21kB of RAM, which includes al tables, a 4Kbyte PCM output buffer and
asingle frame input buffer.

Sample Rate Content Channels | ARM7TDMI? | ARM9TDMI® | ARMOYE!
48kHz 320kbits Stereo 29MHz 25MHz 19MHz
(peak)
44.1kHz 128kbits Stereo 25MHz 22MHz 18MHz
(average)

Table 1. Peak and average performance figures for MP3 decode on ARM platforms

The peak performance figures are quoted for worst-case Huffman codes whereas typica music
isless difficult to decode than a worst-case bitstream.

The ARMOE architecture has enhanced DSP features including a faster multiplier, and can
therefore implement the IMDCT and filtering functions in fewer clock cycles than the other
architectures. The ARM9E combines the best features of the RISC architecture, with efficient
DSP operation.

A7 IAaNnIAN Neea 7 L N ¥ AAAA ARRA T &l

Because the time spent implementing these particular functions is approximately proportional
to the sampling frequency, reducing the sample rate has a less pronounced effect on the
overal system clock for the DSP-enhanced (ARM9E) architecture.

Quality

The software implementation has been rigorously tested against the 1SO reference standard.
The test strategy included use of 1SO test patterns and in-house tests, with the aim of stressing
all possible corner cases, for al stages of the decoder, such as the Huffman decode function.
In order to ensure that all table entries were tested at least once, around 150 different test cases
were devised, each comprising of between one and approximately 1000 frames of data. The
code was also stressed by deliberately introducing errors into the MP3 bit stream before
replaying the data, as well as attempting to replay invalid and non-MP3 files, to ensure there
were no adverse consequences such as assertion failures, infinite loops or out of range
memory accesses. In addition, the tests verified the quality of the implementation at a range of
input bit rates and output sample rates.

The ARM implementation has a maximum difference of +/-1 in the least-significant bit,
compared with the reference. Consequently the signal-to-noise ratio of the ARM decoder is
approximately 96dB. This represents the best achievable signal-to-noise ratio for a truncated
16-bit output.

I ntegration

The ARM MP3 software implementation is easy to integrate, with or without an RTOS. A
simple API is provided with four functions:

initialise

find sync word
decode frame header
decode frame data

o 00O

The development kit also includes an example of a player application demonstrating
implementation of forward and backward cueing functions.

The MP3 ARM implementation is commercially available today. Implementations are also
available for the current WMA and MPEG AAC standards.

A7 IAaNnIAN [o WS s Y ¥ AAAA ARRA T &l

Summary

Examining the implementation of the core MP3 processing has highlighted several features in
the ARM ingtruction set which are critical in achieving a highly efficient solution for MP3
decoding.

To summarise, these are:
o Conditional execution
o Efficiencies gained in eliminating branching illustrate the significant amount of
control overhead within the overall MP3 processing stages.
Single-cycle bit manipulation instructions
0 Since many of the data processing requirements can be answered by bit-level
manipulation, this gives the ARM architecture a significant advantage.
0 In-line barrel shifter
0 The barrel shifter is used heavily in the front-end bit stream processing for
decoding and scaling operations.
0 32-bit datapath
0 The 32-bit data representation ensures that the final accuracy easily meets the
ISO reference.
o Efficient multiple data handling
0 The high bandwidth 32-bit bus can be used to load two 16-bit words in a single
cycle, the efficient bit-manipulation functions ensure that the words can be
easily extracted.
0 8-bit Booth’s multiplication
0 An estimated 25% of the total algorithm relies on parallel multiplication that
cannot be efficiently implemented by bit manipulation. Although the number of
multiplications required is significant, they do not represent the most critical
part of the algorithm. The standard RISC architecture includes an efficient
Booth's multiplier. For applications that are more dependent on fast
multiplication, the enhanced architecture includes a load-multiply instruction
that effectively saves 3 cycles per multiply.

o

Analysis of the processing stages in the MP3 algorithm illustrates that in the critical front-end
steps, which include reading of the bitstream, Huffman decoding and inverse quantisation, the
ARM RISC architecture has a performance advantage over many DSP implementations.

Providing a single-processor integrated solution offers power, cost and development
advantages over a two-processor implementation based on a DSP interfaced to a
microcontroller.

The ARM platform has already established itself in a range of high-volume consumer
applications that require a combination of flexibility, low-power and cost single-chip
applications. The ARM-based MP3 solution presented here satisfies all of these criteria, and
also offers an accelerated development path critical in meeting current market demand.

A7 IAaNnIAN [o WS NI ¥ AAAA ARRA T &l

